Questioning Learning Analytics – Cultivating critical engagement (LAK’22)

Gist of LAK 22 paper

Our full research paper has been nominated for Best Paper at the prestigious Learning Analytics and Knowledge (LAK) Conference:

Antonette Shibani, Simon Knight and Simon Buckingham Shum (2022, Forthcoming). Questioning learning analytics? Cultivating critical engagement as student automated feedback literacy. [BEST RESEARCH PAPER NOMINEE] The 12th International Learning Analytics & Knowledge Conference (LAK ’22).

Here’s the gist of what the paper talks about:

  • Learning Analytics (LA) still requires substantive evidence for outcomes of impact in educational practice. A human-centered approach can bring about better uptake of LA.
  • We need critical engagement and interaction with LA to help tackle issues ranging from black-boxing, imperfect analytics, and the lack of explainability of algorithms and artificial intelligence systems, to the required relevant skills and capabilities of LA users when dealing with such advanced technologies.
  • Students must be able to, and should be encouraged to, question analytics in student-facing LA systems as Critical engagement is a metacognitive capacity that both demonstrates and builds student understanding.
  • This puts the power back to users and empowers them with agency when using LA.
  • Critical engagement with LA should be facilitated with careful design for learning; we provide an example case with automated writing feedback – see the paper for details on what the design involved.
  • We show empirical data and findings from student annotations of automated feedback from AcaWriter, where we want them to develop their automated feedback literacy.

The full paper is available for download at this link: [Author accepted manuscript pdf].

This paper was the hardest for me to write personally since I was running on 2-3 hours of sleep right after joining work part-time following my maternity leave. Super stoked to hear about the best paper nomination, as my work as a new mum paid off. Good to be back at work while also taking care of the little bubba 🙂 Thanks to my co-authors for accommodating my writing request really close to the deadline!

Also, workshops coming up in LAK22:

  • Antonette Shibani, Andrew Gibson, Simon Knight, Philip H Winne, Diane Litman (2022, Forthcoming). Writing Analytics for higher-order thinking skills. Accepted workshop at The 12th International Learning Analytics & Knowledge Conference (LAK ’22).
  • Yi-Shan Tsai, Melanie Peffer, Antonette Shibani, Isabel Hilliger, Bodong Chen, Yizhou Fan, Rogers Kaliisa, Nia Dowell and Simon Knight (2022, Forthcoming). Writing for Publication: Engaging Your Audience. Accepted workshop at The 12th International Learning Analytics & Knowledge Conference (LAK ’22).

Contextualizable learning analytics for writing support

Recently I gave a talk on Augmenting pedagogical writing support with contextualizable learning analytics at the CRLI seminar series in the University of Sydney.  It was a great opportunity to share and discuss ideas from my PhD research, and indeed a privilege to be invited to present at this seminar. Long time slot means less time constraints, so I enjoyed doing the 1 hour+ session. The talk is recorded and available for viewing on Youtube, and the slides are here. This post is a summary of the key ideas from this talk and an upcoming paper on ‘Contextualizable Learning Analytics Design (CLAD)’.

Big data, learning analytics and education:

Big data and artificial intelligence are changing many ways we do things to improve our lives (for better or for worse). Companies around the world including Facebook, Google, Apple and Amazon use data everyday to get big insights to support us. What can the more traditional organizations like educational institutions use data for? Can we harness this technology and data to improve learning? To answer these questions, Learning Analytics (LA) emerged as a field to attempt tackling huge amounts of data in education. Although data was previously available in education research for decades, different granularities of data from multiple sources in authentic scenarios and technical affordances of new tools can now support many causes which were not previously plausible. This root cause for the inception of the field has probably been a reason for its emphasis on ‘big impact’ and generalizable solutions that can cater to and scale up to huge numbers. Massive Open Online Courses (MOOCS) are a classic example of how we can scale teaching to a large number of learners using technology. However, the problem with scalable, generalizable solutions in learning analytics is that education is inherently contextual, and a one-size-fits all approach would not work in all contexts the same way. This has led to the argument on moving from big data to meaningful data for learning analytics.

Bringing in the context:

To bring the educational context to Learning Analytics (LA), it must be coupled with pedagogical approaches. This involves the integration of LA in pedagogical contexts to augment the learning design and provide analytics that are aligned with the intended learning outcomes. Learning Design (LD) describes an educational process, and involves the design of units of learning, learning activities or learning environment which are pedagogically informed. LA can provide the necessary data, methodologies and tools to test the assumptions of the learning design, and LD can add value to the analytics by making it meaningful for the learner. By bringing LA and LD together, they can contribute to each other and close the gap between the potential and actual use of technology.

Contextualizable Learning Analytics Design:

We introduce the Contextualizable Learning Analytics Design (CLAD) model in a forthcoming article by bringing together the elements of LA and LD for context. The educators are involved with LA developers to co-design this contextualization. This involves LD elements of assessment and task design, and LA elements of features and feedback working dynamically and in sync for different contexts, rather than being rigidly fixed. The CLAD model is demonstrated by implementing the Writing Analytics tool ‘AcaWriter’ in different learning contexts (Law essay writing, Accounting business report writing). AcaWriter, developed by the Connected Intelligence Centre, UTS provides automated feedback on student writing based on rhetorical moves. To contextualize the use of this LA tool for students, the elements of the CLAD model were employed as follows:

  • Assessment formed the basis of contextualization to align AcaWriter with the intended learning outcomes.
  • The features of data that are important for the context were picked so that AcaWriter can bring them to the attention of the learners.
  • The feedback from AcaWriter was tuned to make it relevant for the context of writing by mapping it back to assessment criteria.
  • Task design ensured that AcaWriter activities are relevant to the learner and grounded by pedagogic theory.

With such contextualized LA, the educator has agency to design learning analytics that is relevant to the learning context, and the learner finds it meaningful due to its embedding in the curriculum. This ensures that LA contributes to learning in authentic practice by augmenting existing good pedagogic practice. The approach scales over multiple learning contexts by transferring good design patterns from one learning context to another (for example from law essay writing to accounting business report writing).

More details on the above can be found in the following article, and related resources are available on the HETA project website.

References: