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Abstract
Constructing scientific arguments is an important practice for students because it helps 
them to make sense of data using scientific knowledge and within the conceptual and 
experimental boundaries of an investigation. In this study, we used a text mining method 
called Latent Dirichlet Allocation (LDA) to identify underlying patterns in students written 
scientific arguments about a complex scientific phenomenon called Albedo Effect. We fur-
ther examined how identified patterns compare to existing frameworks related to explain-
ing evidence to support claims and attributing sources of uncertainty. LDA was applied to 
electronically stored arguments written by 2472 students and concerning how decreases 
in sea ice affect global temperatures. The results indicated that each content topic identi-
fied in the explanations by the LDA— “data only,” “reasoning only,” “data and reasoning 
combined,” “wrong reasoning types,” and “restatement of the claim”—could be interpreted 
using the claim–evidence–reasoning framework. Similarly, each topic identified in the stu-
dents’ uncertainty attributions— “self-evaluations,” “personal sources related to knowl-
edge and experience,” and “scientific sources related to reasoning and data”—could be 
interpreted using the taxonomy of uncertainty attribution. These results indicate that LDA 
can serve as a tool for content analysis that can discover semantic patterns in students’ sci-
entific argumentation in particular science domains and facilitate teachers’ providing help 
to students.
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Introduction

Education research involves analyzing text data, such as written artifacts, essays, 
interview transcripts, and discourse transcripts. However, most text analyses rely on 
researchers’ efforts, which can be prone to internal biases and inconsistencies (Yu et al. 
2011). As a result, discovering patterns in large quantities of text data is logistically 
challenging and time consuming. Consider Massive open online courses (MOOCs). It 
is almost impossible to conduct thorough analyses of open-ended assignments admin-
istered in large-scale courses without using computer-aided automation. When applied 
properly and interpreted meaningfully, text mining has the potential to dramatically 
facilitate efforts to discover overarching patterns in text data produced by students.

A few studies have employed automated text analyses in educational settings, 
including the automated scoring of essays, constructed-response items and online 
forums (e.g. Beggrow et al. 2014; Chen et al., 2015; Dikli 2006; Liu et al. 2016; Sher-
mis and Burstein 2003; Tawfik et  al. 2018; Xing and Gao 2018; Xing et  al. 2019a, 
b; Xing et  al. 2019a, b; Zhu et  al. 2019). Rosé et  al. (2008) automated the analyses 
of computer-supported collaborative learning processes and developed conversational 
agents to support student discourse. Several studies have also used text mining to rec-
ommend resources and to facilitate discussion in online forums and live video chats 
(e.g. Ezen-Can et al. 2015; Abdous et al. 2012; Tane et al. 2004). Through the auto-
matic processing of large quantities of text data, these studies aimed to provide and 
facilitate domain-general learning and communication.

Despite the fact that much of the student work produced in classrooms is in the form 
of text, few studies have investigated ways in which text mining can be used in specific 
domains, such as science. In this study, we used a novel, unsupervised text mining 
technology called Latent Dirichlet Allocation (LDA) to analyze the content of domain-
specific texts produced by students as part of written, scientific arguments. We sought 
to answer two overall research questions and the sub questions in it:

• What underlying patterns would LDA identify in the support that students pro-
vided for the claims they made while completing a written scientific-argumentation 
assignment about the Albedo Effect? How would these patterns relate to the claim–
evidence–reasoning framework? To what extent would these patterns produce cor-
rect and incorrect claims?

• What underlying patterns would LDA identify in the students’ identifications of 
sources of uncertainty, which could weaken their arguments? How would these pat-
terns of uncertainty attribution relate to the taxonomy provided by the uncertainty 
attribution framework? How would these patterns relate to uncertainty ratings?

Because the main purposes of this study were to introduce LDA and to demonstrate 
its potential for application in science education, we used a scientific-argumentation 
task as a case study. We expected that in this case study, LDA would be able to iden-
tify patterns across a large number of student-generated written arguments. The results 
from LDA can help teachers and instructional designers to better evaluate and support 
students’ science learning.
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Background

Scientific argumentation

Argumentation occurs in both everyday and educational settings (Kuhn 1993; Simosi 
2003). Scientific argumentation is different from everyday argumentation, however, 
because its validity is assessed according to the norms and practices commonly accepted 
by the scientific community (Sampson and Clark 2008). Scientific argumentation provides 
both scientists and students unique opportunities to interpret data obtained during investi-
gations in light of their understandings of the relevant phenomena (Bricker and Bell 2008) 
and to reflect on the limitations imposed by such investigations (Allchin 2012). The epis-
temic benefits of incorporating scientific argumentation into science instruction include the 
coordination of theory and evidence to make sense of scientific phenomena and under-
standing how scientific knowledge is developed and refined as new evidence and new 
understandings emerge (Duschl et al. 2007; Sandoval 2003). Scientific argumentation has 
also been promoted as one of eight scientific practices that should be implemented in sci-
ence classes (National Research Council 2012; NGSS Lead States 2013).

Scientific argumentation is carried out by means of language (Walton et al. 2008), rhe-
torically (Sampson and Clark 2008), or dialogically (Clark and Sampson 2008) using com-
monly recognized elements (Toulmin 1958), such as:

• A claim that answers the question driving an investigation.
• Data that support the claim.
• Warrants based on knowledge available to the investigator that explain how the data 

support the claim.
• Backing, or the select collection of established scientific facts from which the warrants 

are drawn.
• Qualifiers, which indicate the strength of the claim given the evidence and the backing.
• Conditions of rebuttal, which specify circumstances in which the claim may be inappli-

cable because of methodological, conceptual, or contextual limitations.

Most of the analytic frameworks that can be used to analyze written scientific arguments 
focus on the claim–evidence–reasoning expressed in the claim, the data, the warrants, and 
the backing (Clark and Sampson 2008). These frameworks assess how well students coor-
dinate theory and evidence. No studies have used qualifiers and conditions of rebuttal to 
analyze written arguments, however, even though investigations should critically evaluate 
the evidence—data never support scientific claims with absolute certainty. Instead, existing 
research has conceived of them as counterarguments made by multiple students or groups 
of students focusing on flaws in claim–evidence coordination (Erduran et al. 2004).

Lee et al. (2014) recently proposed an uncertainty-infused framework of scientific argu-
mentation that can be used to assess students’ written arguments using all six of Toulmin’s 
(1958) elements. On this framework, qualifiers are understood as expressing the degree of 
uncertainty in a claim, while conditions of rebuttal are understood as attributing sources of 
uncertainty rooted in epistemic or ontological limitations. The Rasch modeling of students’ 
written arguments showed that the framework can be used to interpret uncertainty and to 
link claims and evidence with reasoning.

Uncertainty has solid theoretical foundations in self-regulated learning and particu-
larly related to monitoring accuracy and hard-easy effect. Monitoring accuracy (over/
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underconfidence) is able to influence greatly on students’ learning and memory (Dunlosky 
and Rawson 2012). Studies have shown that learners’ confidence is able to predict their 
test results and their realistic with their goals (Huff and Nietfeld 2009). In the meantime, 
according to the hard-easy effect, individuals tend to be overconfident on hard tasks and 
underconfident on easy tasks (Stone 2000). Under or over-confidence can be explained 
from their uncertainty level. Therefore, examining the students’ uncertainty level in their 
argumentation can give teachers’ insights to help students’ regulate their learning process.

So far, the assessment of students’ written scientific arguments has relied on human 
judgments. Most human-coding approaches have used Toulmin’s (1958) characterization 
of argumentation to determine which aspects of scientific arguments to assess. These stud-
ies have generally used qualitative approaches to determine the nature of argumentative 
discourses (Aufschnaiter et al. 2008; de Vries et al. 2002) or to identify patterns inherent in 
written arguments (Berland and Reiser 2009; Sandoval and Millwood 2005). For example, 
Erduran et al. (2004) used a cumulative coding scheme on which scores increased as addi-
tional structural elements were added. Sadler and Fowler (2006) developed a rubric con-
sisting of claims “without justification,” “with no valid grounds,” “with simple grounds,” 
“with elaborated grounds,” and “with elaborated grounds with a counter-position.” How-
ever, the time- and effort-intensive nature of qualitative approaches requires that analyses 
be conducted on relatively small samples, and this can limit the generalizability of the 
results.

Text mining

Text mining focuses on automatically identifying and extracting interesting and non-triv-
ial information from unstructured text (Feldman 1995), and it uses methods from infor-
mation retrieval, machine learning, data mining, statistics, and computational linguistics. 
Unlike the traditional mining of structured databases or XML files, text mining can handle 
unstructured or semi-structured data, including e-mails, full texts, and HTML files. Text 
mining begins with the preprocessing of textual data and ends with the storing of extracted 
information in a data structure suitable for retrieval. Most text mining methods assume 
that a text document can be represented as a set of words (i.e. a bag-of-words) (Hotho 
et al. 2005). A vector representation for a text document is constructed for an identified set 
of words. The importance of each word in the document is determined by assigning it a 
numerical importance value.

Education research has used qualitative paradigms (such as grounded theory and con-
tent analysis) to analyze texts without the explicit aid of computer algorithms. Therefore, 
questions related to text mining’s unique contribution to and compatibility with qualitative 
research methodologies have been raised and actively discussed in the literature (Janasik 
et al. 2009; Yu et al. 2011). Yu et al. (2011) described three elements shared by text mining 
and qualitative research. First, text mining, like grounded theory, aims to iteratively refine 
the theoretical or analytical framework(s) that the researcher is applying to the text data by 
adding, deleting, and revising initial patterns, observations, and categories. Second, text 
mining, like content analysis, identifies common themes by processing natural language. 
Third, the quality and validity of the results of text mining are subject to the same criteria 
that are used to evaluate qualitative research, including reliability and consistency. There is 
no doubt that human inspection and insights are needed to interpret the categories and pat-
terns generated by automated text mining algorithms.
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Some educational applications of text mining can be found in the literature. Akçapınar 
(2015) used text mining to identify similarities in text documents to reduce plagiarism 
in online writing assignments. Lin et al. (2009) used text mining to distinguish different 
genres of threads in online discussions. To measure civic scientific literacy in the media, 
Tseng et al. (2010) used text mining to draw concept maps for news stories. Hung (2012) 
processed 689 refereed publications using hierarchical agglomerative clustering to iden-
tify longitudinal trends in e-learning research. Abdous and He (2011) analyzed live video 
streams that featured textual data using various clustering and classification algorithms to 
identify students’ technology-related problems. Chen et al. (2008) produced an e-learning-
domain concept map by mining academic articles. Tane et al. (2004) used k-means cluster-
ing to group e-learning resources and documents according to similarities in their contents. 
Some studies have examined the automated scoring of essays (e.g. Shermis and Burstein 
2003; Dikli 2006). LDA also has applications in education. Ezen-Can et al. (2015) applied 
LDA to a MOOC discussion forum to group similar posts into clusters and to investigate 
the structures of these clustered posts. Southavilay et al. (2013) used LDA to examine the 
evolution of topics in collaborative writing processes. Similarly, Chen (2014) used LDA to 
track topics and changes in a collaborative discussion context.

One subfield of text mining focuses on analyzing argumentative texts—including 
essays, legal documents, and research publications—in the sciences. In this subfield, text 
mining applications are used to identify in different argumentative texts various structural 
elements of argumentation, including claims, warrants/reasoning/backing, rebuttals, and 
data/evidence (Zhang and Litman 2015). Instead of being used to identify domain-specific 
conceptual tendencies or difficulties, the findings of such analyses can be used to compare 
different text documents or to track revisions. The argumentative texts analyzed in struc-
tural text mining are relatively long; unsupervised text mining is not commonly used to 
analyze the contents of short argumentative texts, i.e. texts approximately three to seven 
sentences in length. No studies were found that explored whether text mining (including 
LDA) can be used to find semiotic patterns in students’ scientific arguments.

Research context

Framing scientific argumentation

Data on students’ written scientific argumentation were collected as part of a NSF-funded 
project called “High-Adventure Science (HAS).” These data are available at https ://conco 
rd.org/high-adven ture-scien ce/. The HAS project created six interactive curriculum mod-
ules related to Earth and space science for high school and middle school students. The 
project contextualized students’ investigations into current scientists’ inquiries, such as 
“What is the future of Earth’s climate?” and “What are our choices for supplying energy 
for the future?”.

In the HAS modules, scientific argumentation was systematically incorporated into sci-
ence activities. Prior to completing writing tasks involving scientific argumentation, stu-
dents analyzed and interpreted scientific data collected by scientists or generated by manip-
ulating models. Students also read scientific materials to gain the background necessary to 
interpret the data. Students then responded to four-part scientific-argumentation prompts 
designed to help them develop their arguments. They were asked to:

https://concord.org/high-adventure-science/
https://concord.org/high-adventure-science/
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• Make scientific claims by selecting an answer from multiple choices (claim).
• In open-ended responses, explain claims using evidence and theory (explanation).
• Express their levels of uncertainty regarding their explanations for their claims using a 

five-point Likert scale ranging from “not at all certain” (1) to “very certain” (5) (uncer-
tainty rating).

• In open-ended responses, identify sources of uncertainty (uncertainty attribution).

As Fig.  1 shows, the students’ responses to the “claim” and “uncertainty-rating” 
prompts were numerical, while their responses to the “explanation” and “uncertainty-attri-
bution” prompts were textual. Text mining was applied to the open-ended explanations and 
uncertainty attributions that the students produced.

These four-part scientific-argumentation prompts were developed to elicit uncertainty-
infused scientific argumentation (Lee et al. 2014). The framework of uncertainty-infused 
scientific argumentation emphasizes the fact that scientific claims based on data cannot be 

Fig. 1  The four-part scientific-argumentation task related to the Albedo Effect in Question #6 is the claim, 
Question #7 is the explanation, Question #8 is the uncertainty rating, and Question #9 is the uncertainty 
attribution
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made with absolute certainty (Staley 2014) because of the ways in which scientific investi-
gations produce data and the ways in which scientific knowledge is used to interpret data. 
The “claim,” “explanation,” “uncertainty rating,” and “uncertainty attribution” prompts 
were intentionally separated because students have difficulty distinguishing among claims, 
data/evidence, and warrant/reasoning when engaging in unguided free writing (Berland 
and Reiser 2009) and they may not include uncertainty related to their claims when they 
are not explicitly asked to do so.

Scientific‑argumentation task on the albedo effect

This task addressed how changes in albedo (i.e. the reflection of light off of the Earth’s sur-
face) triggered by losses of sea ice can affect Earth’s temperature. This argumentation task 
was delivered online via the HAS module “What is the future of Earth’s climate?” (“Cli-
mate change” for short). The students’ responses were collected electronically. As Fig. 1 
shows, the task provided data—e.g. “In the 1970s, sea ice covered 10.8 Million square 
kilometers of the Arctic Ocean. In 2010, sea ice covered 8.7 Million square kilometers of 
the Arctic Ocean.” In addition, the task included the information necessary for the students 
to reason about the color of the Earth’s surface and the absorption of the sun’s radiation by 
the Earth’s surface. Students were thus provided both the data and the knowledge required 
to form their arguments. By analyzing the students’ written responses to the “explanation” 
and “uncertainty attribution” prompts, we discovered how the students reasoned in their 
explanations using particular pieces of data and how they thought about sources of uncer-
tainty in their uncertainty attributions.

Over a 3-year period, the climate-change module in which the albedo-effect argumen-
tation task was embedded was employed in 11 U.S. states by 24 middle and high school 
teachers and 2472 of their students. These teachers were recruited via Earth-science-list-
serv emails and conferences for science teachers. Of the students, 47.4% were male, 8.0% 
were English Language Learners, and 52% regularly used computers for school work. The 
average age of the students was 14.06 (SD = 1.80). In this study, LDA was applied to the 
students’ open-ended textual responses to the “explanation” and “uncertainty attribution” 
prompts. Claims were coded as “correct” or “incorrect.” Uncertainty ratings were coded 
from 1 (not at all certain) to 5 (very certain).

The analytic framework used in this uncertainty-infused scientific-argumentation task 
separated explanations of claims from identifications of sources of uncertainty. We used 
claim–evidence–reasoning to group the explanations into the following categories:

• Claim without explanation
• Partial explanation without details regarding data or reasoning
• Explanation containing elaborated data but not reasoning
• Explanation containing elaborated reasoning but not data
• Explanation containing both elaborated data and elaborated reasoning

In addition, we developed a taxonomy of uncertainty attributions that included the 
following:

• Introspective confidence, which indicated the student’s personal confidence or certainty 
level.
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• Internal rationale, which was based on the student’s personal knowledge and experi-
ence.

• External source acknowledgement, which generically referred to data or knowledge
• External scientific disposition, which articulated the scientific data or knowledge that 

the student used in support of their claims.
• External scientific limitation, which described the theoretical, methodological, meas-

urement, and interpretive limitations inherent in the data collection and analysis.

We used these above two analytic frameworks when interpreting the topics that LDA 
identified. These topics are described in the results section.

Methods

Overview

To go beyond word frequency count, a text mining method, Latent Dirichlet Allocation 
(LDA), was proposed to dig into the content in order to automatically identify the gen-
eral topic patterns in students’ explanation and uncertainty argumentation. To facilitate the 
understanding of the discovered topics, we create a dynamic visualization of LDA devel-
oped by Sievert and Shirley (2014). These visual analytics help us discover the meaning of 
each topic, examine the prevalence of each topic, and estimate how these topics relate to 
each other. We then characterize each of the identified topic by examining the most repre-
sentative topical words and present the typical argumentation examples. In order to show 
the different identified topics by LDA influence students’ actual scientific argumentation 
performance, statistical analysis was performed to examine student performance differ-
ence in students’ explanations (Chi-Square independence test) and uncertainties (one-way 
ANOVA). Students’ argumentation performance ratings on explanations and uncertainties 
were rated manually by experts in science learning.

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a probabilistic model commonly used for topic mod-
eling in natural language processing. It is essentially an unsupervised clustering algorithm 
that automatically identifies topics common among text documents. Clustering algorithms 
like LDA assume that: (1) a text document is comprised of several topics, (2) each topic 
consists of several words, and (3) the probability of each topic appearing in a given text 
document can be calculated. Topics are identified in large sets of text documents (i.e. data 
corpuses) by computationally examining important words that appear in both a given text 
document and throughout the entire corpus.

The study was conducted in five steps. The first three steps involved identifying patterns 
of topics by applying LDA to the argumentative responses that the students provided in 
their explanations and uncertainty attributions. Step 1 involved pre-processing to remove 
noise from the textual data. A series of standard pre-processing techniques were performed, 
including removing all non-letter symbols, numbers, punctuation marks, stop words, and 
stemming. This preprocessing resulted in a data corpus in the form of a “bag-of-words” 
that took into account the number of times that words occurred but not the order in which 
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they occurred. In this step, we also used our corpus to show the general frequency with 
which students used particular words in their explanations and uncertainty attributions.

Since there was no definitive prior knowledge on how many topics should be identi-
fied in students’ explanations and uncertainty attributions, Step 2 was necessary to com-
putationally determine the optimum number of topics (K). The aim was to maximize the 
differences among the computationally discovered topics and to minimize the differences 
within each topic. We combined the optimally-computed K with the analytic frameworks 
we adopted for this study. Specifically, claim-evidence-reasoning framework was adopted 
to inform the decision on the number of topics on explanations, and uncertainty-attribution 
taxonomy was used to inform the topic number decision on uncertainty arguments. Par-
ticularly, a scientific argument expert with more than 15 years of experience will use the 
framework to make an informed decision.

In Step 3, we used LDA to automatically cluster the scientific arguments into differ-
ent topics. At the same time, the words that would best represent each topic were identi-
fied. These words were used to determine what the topic would mean in the context of 
the argumentation task. Since step 3 identified the topics and patterns, it yielded the most 
important results. Appendix details the process by which LDA was implemented. In total, 
2472 “explanation” responses and 2472 “uncertainty-attribution” responses were sepa-
rately analyzed. To further examine the discovered topics, we created a dynamic visuali-
zation of LDA based on Sievert and Shirley (2014). This visualization helped us to dis-
cover the meaning of each topic, to determine the prevalence of each topic, and to estimate 
how the topics related to each other. We then described each topic by identifying the most 
representative topical words and compared them with typical examples of argumentation 
containing them. We interpreted the identified topics using two analytical frameworks. We 
used claim–evidence–reasoning for explanations, and we used the uncertainty taxonomy 
for uncertainty attributions.

In Step 4, to validate the results of topic modeling, we conducted qualitative analysis 
to further show the validity of the derived topics. As there is no gold standard list of top-
ics can be generated to compare to newly discovered topics, many studies apply a variety 
of quantitative measures of model fit such as perplexity or held-out likelihood to evaluate 
the topic models. These metrics are useful for evaluation of the predictive model; however, 
do not address the more explanatory goals of topic modeling. That is, how these generated 
topical words represent the latent space and to what extent users can understand and make 
sense of the topical words.

In this study, a qualitative evaluation was conducted on the topic models called topic 
intrusion (Chang et al. 2009). Topic intrusion examines whether the topics produced via 
topic modeling matches human judgments of the topics addressed in the student responses. 
This provides an evaluation of the latent space showing whether the topics produced 
describe the student responses well. A number of student responses are randomly selected 
from the whole dataset. A document p, or in our context, a student response, may belong 
to one or several topics. The task is to identify how the topics  ti discovered match this 
student response. Two doctoral students with extensive educational research background 
conducted this analysis together to improve its reliability.

In Step 5, we conducted additional statistical analyses. To examine how the LDA-iden-
tified explanation topics related to correct and incorrect claims, we conducted a Chi-Square 
independence test on percentages of topics making correct claims vs. incorrect claims 
across topics identified by LDA. To examine how the uncertainty ratings were linked to 
the LDA-identified uncertainty-attribution topics, we conducted a one-way ANOVA on the 
uncertainty ratings in the uncertainty attributions for all of the topics identified by LDA.
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In sum, the results of Step 1 function as a descriptive visual statistic for general word 
usage. The results of Step 2 (the K-values) were needed to justify the number of topics 
that would be extracted from the text corpus. The results of Step 3 and Step 5 addressed 
research questions 1 and 2, which related to topic identification and the interpretations 
extracted from the students’ explanations and uncertainty attributions.

Results

Step 1: General word usage

Figure  2 presents word-cloud maps generated from the explanations and uncertainty 
attributions after Step 1 was completed. These overview the general word usage in the 
students’ explanations and uncertainty arguments. Words in larger font sizes occurred 
more frequently than did those in smaller font sizes. The words in these cloud maps 
became a list of words to transform each student’s responses into a vector.

As Fig.  2 shows, “ice,” “melt,” and “temperature” are three of the words that 
occur most frequently in both word-cloud maps. However, the other frequently occur-
ring words differ between “explanation” and “uncertainty attribution” responses. For 
instance, the students’ explanations included words associated with the domain of cli-
mate science, like “atmosphere,” “water,” “heat,” “increase,” “decrease,” and “sea.” Stu-
dents’ uncertainty attributions included words necessary to express uncertainty, such 
as “answer,” “know,” “question,” “certain,” and “sure.” These maps therefore indicate 
that the students treated the “explanation” and “uncertainty attribution” prompts differ-
ently, focusing on scientific reasoning in responding to the “explanation” prompt and on 
uncertainty elaboration in responding to the “uncertainty attribution” prompt.

Fig. 2  Word-cloud maps
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Step 2: Optimal topic numbers (K values)

To determine how many topics should be identified in the students’ explanations and 
uncertainty attributions, we used the log-likelihood method, on which a range of K values 
from 2 to 30 were compared (see Fig. 3). The larger the log-likelihood value, the better the 
topic grouping to extract information from the corpus. As Fig. 3 shows, the highest log-
likelihood was associated with K = 10 for the explanations and K = 11 for the uncertainty 
attributions. Figure 3 also shows that the log-likelihood values increased sharply between 
K = 2 and K = 6 for explanations and from K = 2 to K = 5 for uncertainty attributions. After 
these drastic changes, however, the changes in the log-likelihood values became less pro-
nounced. As a result, we selected six topic groups for the explanations (K = 6) and five 
topic groups for the uncertainty attributions (K = 5) along with the insights from scientific 
argument experts.

Step 3: Research question 1 on explanations

Visualizing the LDA results

Figure 4a presents dynamic visual analytics for the explanations that the students wrote to 
justify their claims about the impact of sea-ice loss on the global climate. The left side of 
Fig. 4a shows a topic map with six circles. Since each circle corresponds to a topic identi-
fied by the LDA algorithm, these six circles represent the six topics most touched upon by 
the students in their explanations. Note that the number of circles (and thus the number of 
topics) resulted from the analysis of the log-likelihood graph in Fig. 3a, after which K = 6 
was chosen. The locations of the centers of the circles represent the distances between the 
topics as determined by the LDA algorithm. The closer are two circles, the more closely 
are related the topics that the circles represent. The LDA algorithm automatically assigned 
a number to each topic—Topic 1, Topic 2, etc.—according to the prevalence of the topic 
within the entire corpus. The largest circle represents Topic 1, which was the most preva-
lent among the explanation-data corpus. The smallest circle represents Topic 6, which was 
the least prevalent among the data corpus.

The bar chart on the right side of Fig. 4a lists the top 12 words that were most relevant 
to the six topics discovered by the algorithm. “Water,” “absorb,” “sunlight,” “temperature,” 

Fig. 3  The log-likelihood graphs used to determine the K values
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“reflect,” “sea,” and “light” were the most important words in distinguishing the six top-
ics. Even though Fig. 2a indicates that the word “ice” was the most prevalent in the stu-
dents’ explanations, “ice” was not listed as one of the top 12 most important words for 

Fig. 4  The LDA results for students’ explanations are visualized. a The topic map on the left shows the 
relative positions and sizes of the six topic groups (K = 6), and the bar graph on the right shows the top 12 
most relevant words for the six topic groups. b Topic 1 highlighted in red with a list of most relevant words 
belonging to Topic 1 on the right
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topic identification. “Ice” was not very useful in distinguishing among topics because “ice” 
appeared in almost all of the students’ explanations. The length of the bar for each word 
represents the number of student explanations that included that word. The longer the 
bar, the more frequently the word appeared in the students’ explanations. “Temperature” 
occurred 700 times in the 2472 explanations, and “water” appeared 460 times.

When a particular circle (topic) is selected from the topic map on the left, the right side 
lists the top 12 most prevalent words in that topic and describes how these words were 
distributed within the data corpus containing that topic (the red bars) and within the entire 
data corpus (the blue bars). In Fig. 4b, Topic 1 was chosen. By comparing for each word 
the size of the red bar to that of the blue bar, it can be determined whether the word was 
present only in a given topic. When such a comparison is made for Topic 1, it is clear that 
only Topic 1 included “absorb,” “sunlight,” “reflect,” “light,” “darker,” and “surface.” We 
can thus tell that students were writing about sunlight absorption, light reflection, and a 
darker surface, which are key to explaining the albedo effect.

Characterizing the identified topics using the most‑representative topical words

In Fig. 4a, Topic 1 is represented by the largest circle and is positioned the farthest away 
from the other five topic circles. Topics 2, 3, 4, and 5 are located close to one another, 
while Topic 6 is isolated from the rest. As this visualization indicates, topics 1 and 6 had 
characteristics different from the other topics, while topics 2, 3, 4, and 5 shared some sali-
ent words among them.

Table 1 lists the number of explanations that included a given topic. Note that an expla-
nation can include more than one topic. In Table 1, the total number of instances may not 
be exactly the same as the original number of instances (2472) due to preprocessing. The 
examples in Table 1 are direct quotes from students and may contain typographical or other 
errors. As Table 1 shows, 817 explanations contained words salient in Topic 1, 721 expla-
nations contained words salient in Topic 2, and so on. Table 1 also includes the top 12 most 
important words used in a given topic. Most words exclusive to the topic are marked with 
an asterisk. For example, the most important words in Topic 1 included “ice,” “absorb,” 
“sunlight,” “sun,” “light,” “heat,” “reflect,” “ocean,” “darker,” “sea,” and “surface.” Of 
these words, “absorb,” “sunlight,” “reflect,” “light,” “darker,” and “surface” occurred 
exclusively in Topic 1. The words identified as exclusive to a given topic were used to 
interpret what the topic meant in terms of claim, evidence (data), and reasoning. For the 
albedo-effect scientific-argumentation task, a scientifically valid argument included:

• A claim: the global temperature will increase.
• Data: the amount of sea ice decreases (over time) or, more specifically, it shrank from 

10.8 Million square kilometers in the 1970s to 8.7 Million square kilometers in 2010.
• Reasoning: because ice reflects sunlight, decreases in sea ice darken the Earth’s surface 

and cause it to absorb more sunlight.

From this, we can easily interpret Topic 1 as expressing the reasoning required by the 
argumentation task. An example response that uses many of the top 12 most important 
words is given below:

Temperature will increase because since lighter surfaces absorb little sunlight 
and since there is less sea ice to absorb the sunlight the temperature will increase 
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since there are more darker surfaces exposed to absorb the sunlight, increasing 
the temperature.

Table 1 lists three other student explanations that included Topic 1. We can see con-
sistency in these students’ explanations because they each included the most important 
words that LDA identified for Topic 1.

The proximity of topics 2, 3, 4, and 5 signals similarities between them: they all 
have to do with decreases in or the melting of ice. Note that “ice” and “melting” are 
two of the most important words in all four of these topics. However, subtle differ-
ences can be noted. As Table 1 shows, Topic 5 differs from topics 2, 3, and 4 because 
“cover,” “million,” “square,” and “year” are exclusive to it. This indicates that Topic 5 
is related to the direct citation of the data that appeared in the argumentation task itself: 
“In the 1970s, there was sea ice covered about 10.8 Million square kilometers as in the 
year of 2010, the sea ice covered 8.7 Million square kilometers of the Arctic Ocean.” 
Some of the explanations in Topic 5 directly cited the data in linking decreases in sea 
ice to temperature decreases (which is an incorrect claim)—e.g. “I think that since the 
ice is decreasing the temperature will drop, too.” Topic 2 is closer to Topic 5 than are 
Topic 3 or Topic 4 because topics 2 and 5 share “sea,” “ice,” and “decreasing.” How-
ever, most Topic 2 responses connected decreases in sea ice (the data) directly to tem-
perature increases (supporting the correct claim). Note that both Topic 2 and Topic 5 
responses do not involve scientific reasoning. This indicates that being able to cite data 
does not always result in choosing a correct claim or providing scientifically elaborated 
reasoning.

Topics 3 and 4 differ from topics 2 and 5 because they provide additional informa-
tion beyond that regarding decreases in sea ice and changes in temperature. Topic 3 
responses used water as a means to formulate reasoning that could be valid or invalid, 
depending upon what role water plays in changing global temperature. For instance, 
“Melting ice creates more water, which evaporates to make the air cooler because evap-
orated water is cold” (this is an example of invalid reasoning). Some students’ explana-
tions indicated that water evaporation warmed the air because high humidity is directly 
associated with warm air (this is an example of invalid scientific reasoning). Other 
explanations indicated that water vapor is a greenhouse gas (this is an example of valid 
scientific reasoning). Topic 4 responses used ice being cold as a main mechanism to 
create warmer air because ice melts as the ocean or the air warms (this is an example of 
correlational, valid reasoning for feedback mechanism) or to create colder air because 
melting ice makes the ocean cold (this is an example of invalid reasoning). Topic 3 and 
Topic 4 responses overlap because they both use the coldness of ice to explain the cool-
ing of air. We found the most misconceptions and instances of incomplete reasoning in 
Topics 3 and 4.

In contrast, Topic 6 responses include “global,” “guess,” “change,” and “don’t.” There 
were three types of examples of Topic 6 responses. One response was to repeat the claim 
related to temperature change without adding additional information. For example, “Tem-
perature will increase.” Another type of response was to nominally cite global warming, 
as in “Why this is happening is because of global warming.” Responses of the final type 
were unrelated to the science in question and included admissions regarding their actions 
or answers, including “I’m just guessing,” “I don’t know,” and “I am correct.” Despite 
their differences, all three types of Topic 6 responses were grouped together because they 
did not include particular mention of sea-ice data or scientific reasoning to explain how 
decreases in sea ice cause increases in temperature.
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Step 4: Evaluations of LDA for explanations

To test how many occurrences of the words with each topic designation had character-
istics uniquely associated with the topic, we analyzed LDA-generated probabilities for 
each explanation response. LDA computed the probability distribution of each explana-
tion argument in each of the six topics. The overall mean of the probabilities of each 
explanation across the six topics was 16.6%. The mean of the highest explanation prob-
ability for each topic was 20.6%. We then used (16.6% + 20.6%)/2 = 18.65% as a thresh-
old to reflect the specific topical characteristics. The accuracy indicator was the percent-
age of the explanations on a given topic that had probabilities above 18.65%. Across the 
six LDA-identified topics, the range of the accuracy-indicator value was 72.3% to 94.9% 
with a mean of 78.6%. The accuracy in topic assignment for explanations was consid-
ered in the scale of good to excellent (Harish et al. 2010). We further conducted qualita-
tive analysis called topic intrusion to examine the validity of the derived topics in Step 
4. Two doctoral students conducted this analysis together. Two hundred responses were 
randomly selected from the data corpus to examine the alignment of discovered topics 
with the students’ written responses. Results showed a decent a topic accuracy as 84%, 
which reflects how much the discovered topics match the student response data.

In summary, the LDA results identified important words and unique words in each 
explanation topic, and these words were in turn used to interpret each topic in terms of 
the established claim–evidence–reasoning framework.

• Did not include data or reasoning (Topic 6)
• Cited data with or without a wrong claim (Topic 5)
• Connected data to a correct claim without providing reasoning (Topic 2)
• Connected data to a claim through reasoning based on ice being cold (Topic 4)
• Connected data to a claim through scientific but alternative reasoning based on the 

evaporation of water (Topic 3)
• Included scientific reasoning addressing the albedo effect (Topic 1)

Step 5: Differences in students’ claims across the six identified explanation topics

We also examined how the presence of these topics in students’ explanations related to 
students making correct claims. Figure 5 shows the mean percentage for each topic of 
the responses associated with a correct claim. As expected, Topic 1, which indicated 
the most scientific reasoning related to the albedo effect, was linked to the highest per-
centage of correct claims. The lowest percentage of correct claims was associated with 
Topic 5, indicating that data citation was not always associated with correct claims. 
These differences in distribution were statistically significant: χ2(5) = 97.60, p < .001. 
To determine whether two topics differed significantly in predicting correct claims, we 
conducted follow-up pair-wise chi-square comparisons. As Table 2 shows, of the 15 full 
comparisons, 10 were significant at p = .05. Differences between topics 2, 3, and 4 were 
not significant in part because the contents of these topics are very similar, as Fig. 4a 
shows. In sum, the LDA method identified explanation patterns that differed signifi-
cantly in their associations with correct and incorrect claims.
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Step 3: Research question 2 on uncertainty attributions

Visualizing the LDA results

As Fig. 6 shows, LDA identified five topics. There are three content clusters. Topics 1 
and 2 overlap, as do topics 3 and 4. Topic 5 is located far from the other four topics. 

Full reasoning
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Fig. 5  The percentages of students who chose a correct claim across the six topics of explanation response

Table 2  Post hoc pair-wise 
comparisons for the explanations

*p < .05

Comparison χ2 p

Topic 1 Topic 2 3.385 .065
Topic 1 Topic 3 7.773 .020*
Topic 1 Topic 4 2.226 .136
Topic 1 Topic 5 67.545 .000*
Topic 1 Topic 6 39.138 .000*
Topic 2 Topic 3 1.600 .449
Topic 2 Topic 4 0.073 .787
Topic 2 Topic 5 40.17 .000*
Topic 2 Topic 6 18.816 .000*
Topic 3 Topic 4 2.112 .348
Topic 3 Topic 5 32.213 .000*
Topic 3 Topic 6 14.004 .000*
Topic 4 Topic 5 43.606 .000*
Topic 4 Topic 6 21.391 .000*
Topic 5 Topic 6 4.202 .040*
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Fig. 6  A visualization of the LDA results for the uncertainty attributions. a On the left are the relative posi-
tions and sizes of the five topic groups (K = 5), and on the right are the top 12 most relevant words across 
all five topics. The size of the topic represents its prevalence, and the distances between the topics reflect 
dissimilarities between them. b Topic 1 highlighted in red with the list of most important words belonging 
to Topic 1 on the right
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This map reveals similarities in content between topics 1 and 2 and between topics 3 
and 4. The content of Topic 5 differs from those of the other four.

Characterizing the identified topics using the most representative topical words

By comparing the lists of important words shown in Table 3, we recognized that topics 1 
and 2 include scientific words relevant to the albedo effect (Topic 2) and data on the melt-
ing of sea ice or on the consequences of warmer atmospheric temperatures (Topic 1). Top-
ics 3 and 4 include words related to students’ evaluations and explanations of their answers. 
Topics 3 and 4 share a number of words, including “I’m,” “because,” “question,” “answer,” 
and “guess.” While they are similar, topics 3 and 4 differ slightly because Topic 3 focuses 
on negative self-evaluation—including words like “don’t,” “didn’t,” and “wasn’t”—and 
Topic 4 focuses on positive self-evaluation—including words like “correct,” “common,” 
and “sense.” Topic 5 responses can be characterized as sources of uncertainty rooted in 
previous beliefs (e.g. “It sounds like global warming, but global warming is not true”), 
experience (e.g. “I remember learning about this in previous science classes”), and knowl-
edge (e.g. “This question reminded me of global warming”). Only one student response 
included all three topic clusters:

I am very certain [Topic 4, positive evaluation of their answer] because we have 
talked about all of the effects in class [Topic 5, personal, prior experience] and also 
because the ice is one of the things that keeps the temperatures stable along with sev-
eral other factors. [Topic 1, science-related, unelaborated reasoning].

Step 4: Evaluations of LDA for uncertainty

Using a similar procedure to that used for the explanations, we also tested for the uncer-
tainty arguments how many of the instances in each topic presented the characteristics. 
The accuracy range was 72.3% to 94.9% with a mean of 78.6%, indicating very good topic 
assignment in terms identifying the correct characteristics. We also conducted a similar 
qualitative topic intrusion analysis here. Two hundred responses were randomly selected 
from the data corpus to examine the alignment of discovered topics with the students’ writ-
ten responses. Results showed a decent a topic accuracy as 78%, which reflects how much 
the discovered topics match the students’ response data.

Step 5: Differences in the students’ claims across the six identified explanation 
topics

We compared the average uncertainty ratings for each of the five topics (see Fig.  7). A 
one-way ANOVA indicated significant differences in the mean uncertainties for the five 
uncertainty-attribution topics: F(4, 2417) = 19.74, p < .001. For instance, when the students 
used scientific words to explain their uncertainty ratings—as they did in topics 1 and 2—
they tended to provide significantly higher certainty ratings (indicating that they were more 
certain) than when they focused on self-evaluation—as they did in topics 3 and 4. It is 
obvious that the mean certainty rating was lowest when the students focused on negative 
self-evaluation. The students’ personal sources of uncertainty—such as their prior experi-
ences, knowledge, and skills—were associated with higher certainty ratings than were their 
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self-evaluations. There were no apparent differences in the uncertainty ratings provided 
when students cited scientific and personal sources of uncertainty. We then conducted post-
hoc analyses to identify significant differences between the mean uncertainty ratings of 
pairs of topics. As Table 4 shows, Tukey’s tests indicated that 7 out of 10 pairs had statisti-
cally significant differences. Student responses that contained self-evaluation topics (Topic 
3 and Topic 4) were associated with significantly lower uncertainty ratings than were those 
that contained scientific attribution sources, such as data/claim and albedo. Within the self-
evaluation topics, responses that contained negative self-evaluations (Topic 3) had signifi-
cantly lower uncertainty ratings than did responses that contained positive self-evaluations 
(Topic 4). Overall, responses containing negative self-evaluation generated significantly 
lower uncertainty ratings than did all of the other types of responses. 

Data/Claim Albedo

Negative
Positive

Personal

0.0

1.0

2.0

3.0

4.0

5.0

Topic 1

(n=645)

Topic 2 

(n=557)

Topic 3 

(n=493)

Topic 4 

(n=491
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(n=310)

A
ve

ra
ge

 U
nc

er
ta

in
ty

 R
at

in
g

Uncertainty Attribution Topics

Scientific
Self-evaluation

Fig. 7  The mean certainty ratings for all five uncertainty-attribution topics

Table 4  Post-hoc pair-wise 
comparisons of uncertainty 
ratings

*p < .01

Comparison Mean difference p

Topic 1 (Data/Claim) Topic 2 (Albedo)  − 0.172 .310
Topic 1 (Data/Claim) Topic 3 (Negative) 0.494 .000*
Topic 1 (Data/Claim) Topic 4 (Positive) 0.268 .006*
Topic 1 (Data/Claim) Topic 5 (Personal) 0.164 .202
Topic 2 (Albedo) Topic 3 (Negative) 0.666 .000*
Topic 2 (Albedo) Topic 4 (Positive) 0.440 .000*
Topic 2 (Albedo) Topic 5 (Personal) 0.336 .001*
Topic 3 (Negative) Topic 4 (Positive)  − 0.226 .019*
Topic 3 (Negative) Topic 5 (Personal)  − 0.330 .000*
Topic 4 (Positive) Topic 5 (Personal)  − 0.104 .657
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Discussion

Unsupervised text mining can automatically analyze the contents of written texts, identi-
fying semantic patterns that can be interpreted using theoretical frameworks available to 
researchers. In this study, LDA identified patterns hidden in students’ written texts, allow-
ing the application of theoretical frameworks that were adapted to the study of students’ 
uncertainty-infused scientific argumentation. LDA not only used salient words to identify 
various explanation and uncertainty-attribution types, but it also identified salient words 
representative of these types, enabling researchers to make interpretations according to the 
claim–evidence–reasoning framework (McNeill et al. 2006) and the uncertainty-attribution 
taxonomy (Lee et al. 2017). Unsupervised text mining is an innovative way to identify pat-
terns in large-scale data. It can be particularly useful in developing scoring rubrics because 
topical methods of text mining like LDA provides teachers and instructional designers 
effective means by which they can identify all of the possible ways in which students might 
respond to an open-ended item.

In this study, LDA discovered meaningful patterns in students’ explanations of their 
claims and in how these explanation patterns related to correct claims. Six explanation top-
ics were identified. Even though the students were expected to fully elaborate scientific 
reasoning, using the data to justify their claims, only 817 of the 2472 explanations in which 
Topic 1 was identified contained fully elaborated scientific reasoning. The rest of the stu-
dents used the opportunity for explanation to restate their claims, to cite data without pro-
viding reasoning, or to describe reasoning based on misconceptions or alternative ideas. 
Indeed, the students who provided scientific reasoning related to the albedo effect were 
significantly more likely to choose a correct claim than were those who did not. Students 
who only cited the data chose correct claims at significantly lower rates than did others. 
This suggests that if a student chooses a correct claim, this does not guarantee that the stu-
dent can identify salient data and use this data to explain their claim scientifically (Osborne 
et al. 2004).

In addition, LDA showed the potential to discover more granular patterns than can qual-
itative coding in processing uncertainty-attribution responses and to better determine how 
these patterns influence certainty levels. The LDA identified three types of topics among 
the uncertainty attributions: “self-evaluation,” “personal sources of uncertainty,” and “sci-
entific sources of uncertainty.” The literature on uncertainty acknowledges that uncertainty 
can be attributed to subjective as well as objective sources (Allchin 2012). The LDA results 
reflect this duality and indicate that personal sources of uncertainty can be divided into: (1) 
evaluations of the current work and (2) evaluations of one’s personal knowledge, experi-
ence, or skill set. When students evaluate their personal knowledge, experience, or skill set, 
their certainty ratings are higher than when they do not. This finding mirrors the theoretical 
work of Kahneman et  al. (1982), which argued that people’s expressions of uncertainty 
point either to the external world (in seeking more objective criteria) or to the state of their 
personal knowledge (due to internal ignorance). External attributions are directed either to 
frequencies of occurrence expressed by data or to causal mechanisms that can explain the 
occurrence. In this study, external attributions included finding scientific sources of uncer-
tainty by examining specific data and instances of specific reasoning based on relevant sci-
entific theory.

The LDA used in this study and its interactive visualization can also help teach-
ers and instructional designers to support students’ learning. For instance, based on the 
LDA results and the visualizations, teachers can quickly overview how students generally 
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constructed their scientific arguments and what the most popular patterns are. Also, teach-
ers can even gain deeper insights into how students conduct scientific argumentation 
beyond the traditional claims, evidence and rebuttal. The LDA can also generate granular 
patterns which teachers can use to diagnostic students learning and provide more detailed 
feedback. Instructional designers can use the granular patterns to develop more compre-
hensive activities, scaffolds, and/or assessment frameworks to evaluate students.

The LDA used in this study has its limitations, however. The LDA and many other text 
mining algorithms only analyze the final product of the scientific argumentation (the text) 
and do not consider process information related to students’ development of scientific-
argumentation abilities over time. Students’ development of scientific argumentation is a 
complex process, in which they connect their prior knowledge, their experience, and their 
understanding of the content to make sense of scientific phenomena. This process involves 
both cognitive and epistemological aspects (Sandoval 2003) that LDA and text mining are 
currently unable to capture. Moreover, as an unsupervised method of machine learning, 
LDA can only be used to survey text at the population level to find general topics. In addi-
tion, LDA is currently implemented in a high vocabulary specificity of a learning context, 
scientific argumentation. It may not work well which have more diverse cultural contexts 
and high diversity of vocabulary.

Another limitation concerns the unigram text model that underlies the LDA itself: LDA 
does not consider the respective positions of the words in a text document. LDA mod-
els arguments like “sea ice decreases increase temperature” and “ice decreases increase 
sea temperature” in the same way because LDA considers only single, unconnected words. 
This limitation can be overcome by using N-grams in addition one gram. An additional 
limitation of LDA is its topic composition and the situation for synonyms and meonyms: 
the same words can be found in multiple topics (as is revealed by our analysis of the top-
ics discovered for the “explanation” and “uncertainty-attribution” responses) or words with 
similar meaning in different student responses. Unlike in a principal component analysis 
(decomposed basis), topics generated by LDA can overlap and are not always mutually 
independent and orthogonal. There are more structured approaches to addressing issues 
of topic composition, however, including hierarchical LDA and structural LDA. Topics 
produced by these algorithms can be joined together in hierarchical or nested structures, 
respectively, in which each node represents a topic distribution. In this way, topics can be 
made more obvious and distinct than they are in LDA.

LDA is just one of the many text mining techniques available. Further explorations of 
text mining tools could include information extraction, the answering of questions, and 
topic tracking. While LDA is conducted after students finish their argumentation tasks, 
topic tracking can enable real-time analyses of students’ argumentation data, from which 
can be extracted information useful in providing feedback. For this reason, topic tracking 
could support the development of real time feedback mechanisms for students.

Conclusion

This study introduced a particular text mining technology—Latent Dirichlet Allocation 
(LDA)—that can be used to analyze the content of short, domain-specific, written scien-
tific-argumentation responses. LDA was used to identify underlying semeiotic patterns 
among students’ scientific-argumentation data. A dynamic visualization tool was used 
to facilitate the interpretation of the patterns discovered in light of established theories 
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concerning the learning of scientific argumentation. When it is applied and interpreted 
meaningfully, automatic text mining can significantly augment human pattern recogni-
tion and can be used as an effective survey tool. New insights and knowledge gained 
from LDA have the potential to transform teachers’ practices through literature dissemi-
nation and through software applications embedded in learning environments.
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Appendix

In the scientific argumentation data about the albedo effect described above, each 
open-ended response a student generates is a text document. That is, each explanation 
response can include several topics. So does each uncertainty attribution response. Stu-
dents’ explanation or uncertainty attribution responses are made up of topics that are 
made up of words. Therefore, LDA describes a document as a probability distribution of 
a mixture of topics, each of which is expressed with another probability distribution of 
words. Topics generated by LDA are a combination of words that contribute to the par-
ticular topic based on probabilities. LDA analysis results should be further interpreted 
by human insights about the context in which documents are generated. In this study, 
LDA is implemented in the following steps:

Step 1: Pre‑processing and data preparation

To remove noise in the text data and format the data for input, pre-processing tech-
niques are applied as follows:

1) All non-letter symbols, numbers, and punctuation are removed.
2) Common stop words such as “a,” “and,” “it,” and “the” are removed.
3) Stemming is performed on the text to convert variations of the same word to a non-

changing root word form. For instance, the root word “produc” captures several varia-
tions of the word like produced, producing, production, etc.

4) Infrequent words are filtered out.

These steps result in a data corpus in the form of a bag-of-words that takes into 
account the occurrences of words, but does not consider their ordering. Each text docu-
ment is represented by a document matrix defined as a vector of the words found in the 
entire corpus along with the frequency of each word found in the document. This is the 
input for the LDA algorithm.
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Step 2: Determining the number of topics K

For the LDA algorithm to work, the number of topics to be extracted from the data cor-
pus, K, needs to be specified. K can be determined by statistical derivations or informed 
by researchers’ insights about the documents. An optimum value of K can be deter-
mined through the Bayesian model selection and approximated using a harmonic mean 
estimator. The log-likelihood plots can show the best K value for the text corpus. Note 
that this statistically derived K value is not the absolute measure for K. Expert judg-
ment based on data, knowledge, and experience can be important in selecting the most 
meaningful K value. In this study, we combine the log-likelihood method with human 
judgment to determine the K value for the scientific argument data corpus. Different K 
values were explored before determining the optimal number. Given the K value, LDA 
generates a list of relevant words for each topic (topical words) and which topics are 
contained in each document.

Step 3: Application of the LDA algorithm

Collapsed Gibbs sampling is applied as follows:

1) Each word in the corpus is randomly assigned to the K number of topics. Each topic 
now constitutes an initial random word distribution based on Dirichlet, which will be 
iteratively improved in the following steps.

2) For each word in a document,
• Compute the proportion of words assigned to a topic in the document, P(topic|document), 

and the proportion of words assigned to that topic from all documents, P(word|topic).
• Reassign the word to a new topic with the probability of P(topic|document) * 

P(word|topic).
3) Repeat Step 2 numerous times until the topic-word assignments are stabilized.
4) Use the topic assignments to calculate the proportion of topics in each document.

Distinctive words that appear in a topic and do not appear in other topics can be very 
useful to characterize the topic. If all the documents contain similar words, it is harder 
to cluster the words into topics, requiring expert evaluation.
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